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Abstract

It is argued that underlying the Church-Turing hypothesis there is an implicit
physical assertion. Here, this assertion is presented explicitly as a physical prin-
ciple: ‘every finitely realizable physical system can be perfectly simulated by a
universal model computing machine operating by finite means’. Classical physics
and the universal Turing machine, because the former is continuous and the latter
discrete, do not obey the principle, at least in the strong form above. A class of
model computing machines that is the quantum generalization of the class of Tur-
ing machines is described, and it is shown that quantum theory and the ‘universal
quantum computer’ are compatible with the principle. Computing machines re-
sembling the universal quantum computer could, in principle, be built and would
have many remarkable properties not reproducible by any Turing machine. These
do not include the computation of non-recursive functions, but they do include
‘quantum parallelism’, a method by which certain probabilistic tasks can be per-
formed faster by a universal quantum computer than by any classical restriction
of it. The intuitive explanation of these properties places an intolerable strain on
all interpretations of quantum theory other than Everett’s. Some of the numerous
connections between the quantum theory of computation and the rest of physics
are explored. Quantum complexity theory allows a physically more reasonable
definition of the ‘complexity’ or ‘knowledge’ in a physical system than does clas-
sical complexity theory.
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1 Computing machines and the Church-Turing principle

The theory of computing machines has been extensively developed during the last few decades. In-
tuitively, a computing machine is any physical system whose dynamical evolution takes it from one
of a set of ‘input’ states to one of a set of ‘output’ states. The states are labelled in some canonical
way, the machine is prepared in a state with a given input label and then, following some motion, the
output state is measured. For a classical deterministic system the measured output label is a definite
functionf of the prepared input label; moreover the value of that label can in principle be measured
by an outside observer (the‘user’) and the machine is said to‘compute’the functionf .

Two classical deterministic computing machines are‘computationally equivalent’under given la-
bellings of their input and output states if they compute the same function under those labellings. But
quantum computing machines, and indeed classical stochastic computing machines, do not ‘compute
functions’ in the above sense: the output state of a stochastic machine is random with only the prob-
ability distribution function for the possible outputs depending on the input state. The output state
of a quantum machine, although fully determined by the input state is not an observable and so the
user cannot in general discover its label. Nevertheless, the notion of computational equivalence can
be generalized to apply to such machines also.

Again we define computational equivalenceunder given labellings,but it is now necessary to
specify more precisely what is to be labelled. As far as the input is concerned, labels must be given
for each of the possible ways of preparing the machine, which correspond, by definition, to all the pos-
sible input states. This is identical with the classical deterministic case. However, there is an asymme-
try between input and output because there is an asymmetry between preparation and measurement:
whereas a quantum system can be prepared in any desired permitted input state, measurement can-
not in general determine its output state; instead one must measure the value of some observable.
(Throughout this paper I shall be using the Schr¨odinger picture, in which the quantum state is a func-
tion of time but observables are constant operators.) Thus what must be labelled is the set of ordered
pairs consisting of an output observable and a possible measured value of that observable (in quantum
theory, a Hermitian operator and one of its eigenvalues). Such an ordered pair contains, in effect, the
specification of a possible experiment that could be made on the output, together with a possible result
of that experiment.

Two computing machines are computationally equivalent under given labellings if in any possi-
ble experiment or sequence of experiments in which their inputs were prepared equivalently under
the input labellings, and observables corresponding to each other under the output labellings were
measured, the measured values of these observables for the two machines would be statistically indis-
tinguishable. That is, the probability distribution functions for the outputs of the two machines would
be identical.

In the sense just described, a given computing machineM computes at most one function. How-
ever, there ought to be no fundamental difference between altering the input state in whichM is
prepared, and altering systematically the constitution ofM so that it becomes a different machineM0

computing a different function. To formalize such operations, it is often useful to consider machines
with two inputs, the preparation of one constituting a ‘program’ determining which function of the
other is to be computed. To each such machineM there corresponds a set C(M) of ‘M-computable
functions’. A functionf isM-computable ifM can computef when prepared with some program.

The set C(M) can be enlarged by enlarging the set of changes in the constitution ofM that
are labelled as possibleM-programs. Given two machinesM andM0 it is possible to construct a
composite machine whose set of computable functions contains the union of C(M) and C(M0).

There is no purely logical reason why one could not go onad infinitumbuilding more powerful
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computing machines, nor why there should exist any function that is outside the computable set of
every physically possible machine. Yet although logic does not forbid the physical computation of ar-
bitrary functions, it seems that physics does. As is well known, when designing computing machines
one rapidly reaches a point when adding additional hardware does not alter the machine’s set of com-
putable functions (under the idealization that the memory capacity is in effect unlimited); moreover,
for functions from the integersZ to themselves the set C(M) is always contained in C(T ), whereT is
Turing’s universal computing machine (Turing 1936). C(T ) itself, also known as the set of recursive
functions, is denumerable and therefore infinitely smaller than the set of all functions fromZ toZ.

Church (1936) and Turing (1936) conjectured that these limitations on what can be computed
are not imposed by the state-of-the-art in designing computing machines, nor by our ingenuity in
constructing models for computation, but are universal. This is called the ‘Church-Turing hypothesis’;
according to Turing,

Every ‘function which would naturally be regarded as computable’ can be
computed by the universal Turing machine.

(1.1)

The conventional, non-physical view of (1.1) interprets it as the quasi-mathematical conjecture
that all possible formalizations of the intuitive mathematical notion of ‘algorithm’ or ‘computation’
are equivalent to each other. But we shall see that it can also be regarded as asserting a new physical
principle, which I shall call the Church-Turingprinciple to distinguish it from other implications and
connotations of the conjecture (1.1).

Hypothesis (1.1) and other formulations that exist in the literature (see Hofstadter (1979) for an
interesting discussion of various versions) are very vague by comparison with physical principles such
as the laws of thermodynamics or the gravitational equivalence principle. But it will be seen below
that my statement of the Church-Turing principle (1.2) is manifestly physical, and unambiguous. I
shall show that it has the same epistemological status as other physical principles.

I propose to reinterpret Turing’s ‘functions which would naturally be regarded as computable’ as
the functions which may in principle be computed by a real physical system. For it would surely
be hard to regard a function ‘naturally’ as computable if it could not be computed in Nature, and
conversely. To this end I shall define the notion of‘perfect simulation’. A computing machineM
is capable of perfectly simulating a physical systemS, under a given labelling of their inputs and
outputs, if there exists a program�(S) forM that rendersM computationally equivalent toS under
that labelling. In other words,�(S) convertsM into a ‘black box’ functionally indistinguishable from
S.

I can now state the physical version of the Church- Turing principle:

‘Every finitely realizable physical system can be perfectly simulated by a
universal model computing machine operating by finite means’.

(1.2)

This formulation is both better defined and more physical than Turing’s own way of expressing it (1.1),
because it refers exclusively to objective concepts such as ‘measurement’, ‘preparation’ and ‘physical
system’, which are already present in measurement theory. It avoids terminology like ‘would naturally
be regarded’, which does not fit well into the existing structure of physics.

The ‘finitely realizable physical systems’ referred to in (1.2) must include any physical object
upon which experimentation is possible. The ‘universal computing machine’ on the other hand, need
only be an idealized (but theoretically permitted) finitely specifiable model. The labellings implicitly
referred to in (1.2) must also be finitely specifiable.

The reference in (1.1) to a specific universal computing machine (Turing’s) has of necessity been
replaced in (1.2) by the more general requirement that this machine operate ‘by finite means’. ‘Finite
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means’ can be defined axiomatically, without restrictive assumptions about the form of physical laws
(cf. Gandy 1980). If we think of a computing machine as proceeding in a sequence of steps whose
duration has a non-zero lower bound, then it operates by ‘finite means’ if (i) only a finite subsystem
(though not always the same one) is in motion during anyone step, and (ii) the motion depends only
on the state of a finite subsystem, and (iii) the rule that specifies the motion can be given finitely in
the mathematical sense (for example as an integer). Turing machines satisfy these conditions, and so
does the universal quantum computerQ (seex2).

The statement of the Church-Turing principle (1.2) is stronger than what is strictly necessitated
by (1.1). Indeed it is so strong that it isnot satisfied by Turing’s machine in classical physics. Owing
to the continuity of classical dynamics, the possible states of a classical system necessarily form a
continuum. Yet there are only countably many ways of preparing a finite input forT . Consequently
T cannot perfectly simulate any classical dynamical system. (The well studied theory of the ‘simu-
lation’ of continuous systems byT concerns itself not with perfect simulation in my sense but with
successive discrete approximation.) Inx3, I shall show that it is consistent with our present knowledge
of the interactions present in Nature that every real (dissipative) finite physical system can be perfectly
simulated by the universal quantum computerQ. Thus quantum theory is compatible with the strong
form (1.2) of the Church-Turing principle.

I now return to my argument that (1.2) is an empirical assertion. The usual criterion for the empiri-
cal status of a theory is that it be experimentally falsifiable (Popper 1959), i.e. that there exist potential
observations that would contradict it. However, since the deeper theories we call ‘principles’ make
reference to experiment onlyvia other theories, the criterion of falsifiability must be applied indirectly
in their case. The principle of conservation of energy, for example, is not in itself contradicted by any
conceivable observation because it contains no specification of how to measure energy. The third law
of thermodynamics whose form

‘No finite process can reduce the entropy or temperature of a finitely realizable
physical system to zero’

(1.3)

bears a certain resemblance to that of the Church-Turing principle, is likewise not directly refutable:
no temperature measurement of finite accuracy could distinguish absolute zero from an arbitrarily
small positive temperature. Similarly, since the number of possible programs for a universal computer
is infinite, no experiment could in general verify that none of them can simulate a system that is
thought to be a counter-example to (1.2).

But all this does not place ‘principles’ outside the realm of empirical science. On the contrary,
they are essential frameworks within which directly testable theories are formulated. Whether or
not a given physical theory contradicts a principle is first determined by logic alone. Then, if the
directly testable theory survives crucial tests but contradicts the principle, that principle is deemed
to be refuted, albeit indirectly. If all known experimentally corroborated theories satisfy a restrictive
principle, then that principle is corroborated and becomes, on the one hand, a guide in the construction
of new theories, and on the other, a means of understanding more deeply the content of existing
theories.

It is often claimed that every ‘reasonable’physical(as opposed to mathematical) model for com-
putation, at least for the deterministic computation of functions fromZ toZ, is equivalent to Turing’s.
But this is not so; there is noa priori reason why physical laws should respect the limitations of the
mathematical processes we call ‘algorithms’ (i.e. the functions C(T )). Although I shall not in this
paper find it necessary to do so, there is nothing paradoxical or inconsistent in postulating physical
systems which compute functions not in C(T). There could be experimentally testable theories to that
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effect: e.g. consider any recursively enumerable non-recursive set (such as the set of integers rep-
resenting programs for terminating algorithms on a given Turing machine). In principle, a physical
theory might have among its implications that a certain physical deviceF could compute in a spec-
ified time whether or not an arbitrary integer in its input belonged to that set. This theory would be
experimentally refuted if a more pedestrian Turing-type computer, programmed to enumerate the set,
ever disagreed withF . (Of course the theory would have to make other predictions as well, otherwise
it could never be non-triviallycorroborated,and its structure would have to be such that its exotic pre-
dictions aboutF could not naturally be severed from its other physical content. All this is logically
possible.)

Nor, conversely, is it obviousa priori that any of the familiar recursive functions is in physical
reality computable. The reason why we find it possible to construct, say, electronic calculators, and
indeed why we can perform mental arithmetic, cannot be found in mathematics or logic.The reason
is that the laws of physics ‘happen to’ permit the existence of physical models for the operations of
arithmetic suchas addition, subtraction and multiplication. If they did not, these familiar operations
would be non-computable functions. We might still knowof them and invoke them in mathematical
proofs (which would presumably be called ‘non-constructive’) but we could not perform them.

If the dynamics of some physical system did depend on a function not in C(T ), then that system
could in principle be used to compute the function. Chaitin (1977) has shown how the truth values of
all ‘interesting’ non-Turing decidable propositions of a given formal system might be tabulated very
efficiently in the first few significant digits of a single physical constant.

But if they were, it might be argued, we could never know because we could not check the accu-
racy of the ‘table’ provided by Nature. This is a fallacy. The reason why we are confident that the
machines we call calculators do indeed compute the arithmetic functions they claim to compute is not
that we can ‘check’ their answers, for this is ultimately a futile process of comparing one machine
with another:Quis custodiet ipsos custodes?The real reason is that we believe the detailed physical
theory that was used in their design. That theory, including its assertion that the abstract functions of
arithmetic are realized in Nature, is empirical.

2 Quantum computers

Every existing general model of computation is effectively classical. That is, a full specification of its
state at any instant is equivalent to the specification of a set of numbers, all of which are in principle
measurable. Yet according to quantum theory there exist no physical systems with this property. The
fact that classical physics and the classical universal Turing machine do not obey the Church-Turing
principle in the strong physical form (1.2) is one motivation for seeking a truly quantum model. The
more urgent motivation is, of course, that classical physics is false.

Benioff (1982) has constructed a model for computation within quantum kinematics and dynam-
ics, but it is still effectively classical in the above sense. It is constructed so that at the end of each
elementary computational step, no characteristically quantum property of the model —interference,
non-separability, or indeterminism — can be detected. Its computations can be perfectly simulated by
a Turing machine.

Feynman (1982) went one step closer to a true quantum computer with his ‘universal quantum
simulator’. This consists of a lattice of spin systems with nearest-neighbour interactions that are
freely specifiable. Although it can surely simulate any system with a finite-dimensional state space (I
do not understand why Feynman doubts that it can simulate fermion systems), it is not a computing
machine in the sense of this article. ‘Programming’ the simulator consists of endowing it byfiat with
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the desired dynamical laws, and then placing it in a desired initial state. But the mechanism that
allows one to select arbitrary dynamical laws is not modelled. The dynamics of a true ‘computer’ in
my sense must be given once and for all, and programming it must consist entirely of preparing it in
a suitablestate(or mixed case).

Albert (1983) has described a quantum mechanical measurement ‘automaton’ and has remarked
that its properties on being set to measure itself have no analogue among classical automata. Albert’s
automata, though they are not general purpose computing machines, are true quantum computers,
members of the general class that I shall study in this section.

In this section I present a general, fully quantum model for computation. I then describe the uni-
versal quantum computerQ, which is capable of perfectly simulating every finite, realizable physical
system. It can simulate ideal closed (zero temperature) systems, including all other instances of quan-
tum computers and quantum simulators, with arbitrarily high but not perfect accuracy. In computing
strict functions fromZ toZ it generates precisely the classical recursive functions C(T ) (a manifesta-
tion of the correspondence principle). UnlikeT , it can simulate any finite classical discrete stochastic
process perfectly. Furthermore, as we shall see inx3, it as many remarkable and potentially useful
capabilities that have no classical analogues.

Like a Turing machine, a model quantum computerQ, consists of two components, a finite pro-
cessor and an infinite memory, of which only a finite portion is ever used. The computation proceeds
in steps of fixed durationT , and during each step only the processor and a finite part of the memory
interact, the rest of the memory remaining static.

The processor consists ofM 2-state observables

fn̂ig (i 2 ZM) (2.1)

whereZM is the set of integers from0 toM � 1. The memory consists of an infinite sequence

fm̂ig (i 2 Z) (2.2)

Of 2-state observables. This corresponds to the infinitely long memory ‘tape’ in a Turing machine.
I shall refer to thefn̂ig collectively asn̂, and to thefm̂ig asm̂. Corresponding to Turing’s ‘tape
position’ is another observablêx, which has the whole ofZ as its spectrum. The observablex̂ is the
‘address’ number of the currently scanned tape location. Since the ‘tape’ is infinitely long, but will be
in motion during computations, it must not be rigid or it could not be made to move ‘by finite means’.
A mechanism that moved the tape according to signals transmitted at finite speed between adjacent
segments only would satisfy the ‘finite means’ requirement and would be sufficient to implement what
follows. Having satisfied ourselves that such a mechanism is possible, we shall not need to model it
explicitly. Thus the state ofQ is a unit vector in the spaceH spanned by the simultaneous eigenvectors

jx;n;mi � jx;n0; n1 � � �nM�1; � � �m�1;m0;m1 � � �i (2.3)

of x̂, n̂ andm̂, labelled by the corresponding eigenvaluesx,n andm. I call (2.3) the‘computational
basis states’. It is convenient to take the spectrum of our2-state observables to beZ2, i.e. the set
f0; 1g, rather thanf�1

2 ;+
1
2g as is customary in physics. An observable with spectrumf0; 1g has a

natural interpretation as a ‘one-bit’ memory element.
The dynamics ofQ are summarized by a constant unitary operatorU on H. U specifies the

evolution of any statej (t)i 2 H (in the Schr¨odinger picture at timet) during a single computation
step

j (nT )i = Unj (0)i (n 2 Z+) (2.4)
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UyU = UUy = 1̂: (2.5)

We shall not need to specify the state at times other than non-negative integer multiples ofT . The
computation begins att = 0. At this time x̂ and n̂ are prepared with the value zero, the state of a
finite number of thêm is prepared as the ‘program’ and ‘input’ in the sense ofx1 and the rest are set
to zero. Thus

j (0)i =P
m
�mj0;0;mi;

P
m
j�mj2 = 1;

9=
; (2.6)

where only a finite number of the�m are non-zero and�m vanishes whenever an infinite number of
them are non-zero.

To satisfy the requirement thatQ operate ‘by finite means’, the matrix elements ofU take the
following form:

hx0;n0;m0jUjx;n;mi = [�x+1
x0 U+(n0;m0

xjn;mx) + �x�1
x0 U�(n0;m0

xjn;mx)]
Y
y 6=x

�
my

my
(2.7)

The continued product on the right ensures that only one memory bit, thexth, participates in a single
computational step. The terms�x�1

x0 ensure that during each step the tape positionx cannot change by
more than one unit, forwards or backwards, or both. The functionsU�(n0;m0jn;m), which represent
a dynamical motion depending only on the ‘local’ observablesn̂ andm̂x, are arbitrary except for the
requirement (2.5) thatU be unitary. Each choice defines a different quantum computer,Q[U+;U�].

Turing machines are said to‘halt’, signalling the end of the computation, when two consecutive
states are identical. A ‘valid’ program is one that causes the machine to halt after a finite number
of steps. However, (2.4) shows that two consecutive states of a quantum computerQ can never be
identical after a non-trivial computation. (This is true of any reversible computer.)

Moreover,Qmust not be observed before the computation has ended since this would, in general,
alter its relative state. Therefore, quantum computers need to signal actively that they have halted.
One of the processor’s internal bits, sayn̂0, must be set aside for this purpose. Every validQ-program
setsn0 to 1 when it terminates but does not interact withn̂0 otherwise. The observablên0 can then
be periodically observed from the outside without affecting the operation ofQ. The analogue of the
classical condition for a program to be valid would be that the expectation value ofn̂0 must go to
one in a finite time. However, it is physically reasonable to allow a wider class ofQ-programs. A
Q-program is valid if the expectation value of itsrunning timeis finite.

Because of unitarity, the dynamics ofQ, as of any closed quantum system, are necessarily re-
versible. Turing machines, on the other hand, undergo irreversible changes during computations, and
indeed it was, until recently, widely held that irreversibility is an essential feature of computation.
However, Bennett (1973) proved that this is not the case by constructing explicitly a reversible classi-
cal model computing machine equivalent to (i.e. generating the same computable function as)T (see
also Toffoli 1979). (Benioff’s machines are equivalent to Bennett’s but use quantum dynamics.)

Quantum computersQ[U+;U�] equivalent to any reversible Turing machine may be obtained by
taking

U�(n0;m0jn;m) =
1

2
�
A(n;m)
n0 �

B(n;m)
m0 [1� C(n;m)] (2.8)

whereA,B andC are functions with ranges(Z2)
M ,Z2 andf�1; 1g respectively. Turing machines, in

other words, are those quantum computers whose dynamics ensure that they remain in a computational
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basis state at the end of each step, given that they start in one. To ensure unitarity it is necessary and
sufficient that the mapping

f(n;m)g  ! f(A(n;m); B(n;m); C(n;m))g (2.9)

be bijective. Since the constitutive functionsA, B andC are otherwise arbitrary there must, in
particular, exist choices that makeQ equivalent to a universal Turing machineT .

To describe the universal quantum computerQ directly in terms of its constitutive transformations
U� would be possible, but unnecessarily tedious. The properties ofQ are better defined by resorting
to a higher level description, leaving the explicit construction ofU� as an exercise for the reader. In
the following I repeatedly invoke the ‘universal’ property ofT .

For every recursive functionf there exists a program�(f) for T such that when the image of
�(f) is followed by the image of any integeri in the input ofT , T eventually halts with�(f) andi
themselves followed by the image off(i), with all other bits still (or again) set to zero. That is, for
some positive integern

Unj0;0;�(f); i;0i = j0; 1;0;�(f); i; f(i);0i: (2.10)

Here0 denotes a sequence of zeros, and the zero eigenvalues ofm̂i (i < 0) are not shown explicitly.
T loses no generality if it is required that every program allocate the memory as an infinite sequence
of ‘slots’, each capable of holding an arbitrary integer. (For example, theath slot might consist of the
bits labelled by successive powers of theath prime.) For each recursive functionf and integersa, b
there exists a program�(f; a; b) which computes the functionf on the contents of slota and places
the result in slotb, leaving slota unchanged. If slotb does not initially contain zero, reversibility
requires that its old value be not overwritten but combined in some reversible way with the value of
the function. Thus, omitting explicit mention of everything unnecessary, we may represent the effect
of the program� by

j
slot 1z }| {

�(f; 2; 3);

slot 2z}|{
i ;

slot 3z}|{
j i ! j�(f; 2; 3); i; j � f(i)i; (2.11)

where� is any associative, commutative operator with the properties

i� i = 0;
i� 0 = i;

�
(2.12)

(the exclusive-or function, for example, would be satisfactory). I denote by�1 � �2 theconcatenation
of two programs�1 and�2, which always exists when�1 and�2 are valid programs;�1 � �2 is a
program whose effect is that of�1 followed by�2.

For any bijective recursive functiong there exists a program�(g; a) whose sole effect is to replace
any integeri in slota by g(i). The proof is immediate, for if some slotb initially contains zero,

�(g; a) = �(g; a; b) � �(g�1; b; a) � �(I; b; a) � �(I; a; b): (2.13)

HereI is the ‘perfect measurement’ function (Deutsch 1985)

j�(I; 2; 3); i; ji ! j�(I; 2; 3); i; j � ii: (2.14)

The universal quantum computerQ has all the properties ofT just described, as summarized in
(2.10) to (2.14). ButQ admits a further class of programs which evolve computational basis states
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into linear superpositions of each other. All programs forQ can be expressed in terms of the ordinary
Turing operations and just eight further operations. These are unitary transformations confined to a
single two-dimensional Hilbert spaceK, the state space of a single bit. Such transformations form a
four (real) parameter family. Let� be any irrational multiple of�. Then the four transformations

V0 =

�
cos� sin�
� sin� cos�

�
; V1 =

�
cos� i sin�
i sin� cos�

�
;

V2 =

�
ei� 0
0 1

�
; V3 =

�
1 0
0 ei�

�
;

9>>>>=
>>>>;

(2.15)

and their inversesV4, V5, V6, V7, generate, under composition, a group dense in the group of all
unitary transformations onH. It is convenient, though not essential, to add two more generators

V8 =
1p
2

�
1 1
�1 1

�
and V9 =

1p
2

�
1 i
i 1

�
; (2.16)

which corresponds to90� ‘spin rotations’. To each generatorVi there correspond computational basis
elements representing programs�(Vi; a), which performVi upon the least significant bit of theath
slot. Thus ifj is zero or one, these basis elements evolve according to

j�(Vi; 2); ji !
1X

k=0

hkjVijjij�(Vi; 2); ki: (2.17)

Composition of theVi may be effected by concatenation of the�(Vi; a). Thus there exist programs
that effect upon the state of anyone bit a unitary transformation arbitrarily close to any desired one.

Analogous conclusions hold for the joint state of any finite numberL of specified bits. This is
not a trivial observation since such a state is not necessarily a direct product of states confined to
the Hilbert spaces of the individual bits, but is in general a linear superposition of such products.
However, I shall now sketch a proof of the existence of a program that effects a unitary transformation
onL bits, arbitrarily close to any desired unitary transformation. In what follows, ‘accurate’ means
‘arbitrarily accurate with respect to the inner product norm’. The caseL = 1 is trivial. The proof for
L bits is by induction.

First note that the(2L)! possible permutations of the2L computational basis states ofL bits are
all invertible recursive functions, and so can be effected by programs forT , and hence forQ.

Next we show that it is possible forQ to generate2L-dimensional unitary transformations di-
agonal in the computation basis, arbitrarily close to any transformation diagonal in that basis. The
(L � 1)-bit diagonal transformations, which are accuratelyQ-computable by the inductive hypoth-
esis, are generated by certain2L-dimensional diagonal unitary matrices whose eigenvalues all have
even degeneracy. The permutations of basis states allowQ accurately to effect every diagonal unitary
transformation with this degeneracy. The closure of this set of degenerate transformations under mul-
tiplications is a group of diagonal transformations dense in the group of all2L-dimensional diagonal
unitary transformations.

Next we show that for eachL-bit statej i there exists aQ-program�(j i) which accurately
evolvesj i to the basis statej0Li in which allL bits are zero. Write

j i = c0j0ij 0i+ c1j1ij 1i; (2.18)

wherej 0i andj 1i are states of theL � 1 bits numbered2 to L. By the inductive hypothesis there
existQ-programs�0 and�1 which accurately evolvej 0i andj 1i, respectively, to the(L � 1)-fold
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productj0L�1i. Therefore there exists aQ-program with the following effect. If bit no.1 is a zero,
execute�0 otherwise execute�1. This converts (2.18) accurately to

(c0j0i+ c1j1i)j0L�1i: (2.19)

Then (2.19) can be evolved accurately toj0Li by a transformation of bit no.1.
Finally, an arbitrary2L-dimensional transformationU is accurately effected by successively trans-

forming each eigenvectorj i of U accurately intoj0Li (by executing the program��1(j i)), then
performing a diagonal unitary transformation which accurately multipliesj0Li by the eigenvalue (a
phase factor) corresponding toj i, but has arbitrarily little effect on any other computational basis
state, and then executing�(j i).

This establishes the sense in whichQ is a universalquantum computer. It can simulate with
arbitrary precision any other quantum computerQ[U+;U�]. For although a quantum computer has
an infinite-dimensional state space, only a finite-dimensional unitary transformation need be effected
at every step to simulate its evolution.

3 Properties of the universal quantum computer

We have already seen that the universal quantum computerQ can perfectly simulate any Turing ma-
chine and can simulate with arbitrary precision any quantum computer or simulator. I shall now show
howQ can simulate various physical systems, real and theoretical, which are beyond the scope of the
universal Turing machineT .

Random numbers and discrete stochastic systems

As is to be expected, there exist programs forQ which generate true random numbers. For example,
when the program

�(V8; 2) � �(I; 2; a) (3.1)

halts, slota contains with probability12 either a zero or a one. Iterative programs incorporating (3.1)
can generate other probabilities, including any probability that is a recursive real. However, this does
not exhaust the abilities ofQ. So far, all our programs have been,per se,classical, though they may
cause the ‘output’ part of the memory to enter non-computational basis states. We now encounter our
first quantum program. The execution of

1p
2
j�(I; 2; a)i(cos �j0i+ sin �j1i) (3.2)

yields in slota, a bit that is zero with probabilitycos2 �. The whole continuum of states of the form
(3.2) are valid programs forQ. In particular, valid programs exist with arbitrary irrational probabilities
cos2 � andsin2 �. It follows that every discrete finite stochastic system, whether or not its probability
distribution function isT -computable, can be perfectly simulated byQ. Even ifT were given access
to a ‘hardware random number generator’ (which cannot really exist classically) or a ‘random oracle’
(Bennett 1981) it could not match this. However, it could get arbitrarily close to doing so. But neither
T nor any classical system whatever, including stochastic ones, can even approximately simulate the
next property ofQ.
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Quantum correlations

The random number generators (3.1) and (3.2) differ slightly from the other programs I have so far
considered in that they necessarily produce ‘waste’ output. The bit in slota is, strictly speaking,
perfectly random only if the contents of slot2 are hidden from the user and never again participate in
computations. The quantum program (3.2) can be used only once to generate a single random bit. If
it were re-used the output would contain non-random correlations.

However, in some applications, such correlations are precisely what is required. The state of slots
2 anda after the execution of (3.1) is the ‘non-separable’ (d’Espagnat 1976) state

1p
2
(j0ij0i + j1ij1i): (3.3)

Consider a pair of programs that swap these slots into an output region of the tape,one at a time.That
is, if the output is at first blank,

1p
2
(j0ij0i + j1ij1i)j0ij0i; (3.4)

execution of the first program halts with

1p
2
j0i(j0ij0i + j1ij1i)j0i; (3.5)

and, execution of the second program halts with

1p
2
j0ij0i(j0ij0i + j1ij1i): (3.6)

An equivalent program is shown explicitly at the end ofx4. Bell’s (1964) theorem tells us that no
classical system can reproduce the statistical results of consecutive measurements made on the output
slots at times (3.5) and (3.6). (Causing the output to appear in two steps with an opportunity for the
user to perform an experiment after each step is sufficient to satisfy the locality requirement in Bell’s
theorem.)

The two bits in (3.3) can also be used.as ‘keys’ for performing ‘quantum cryptography’ (Bennett
et al. 1983).

Perfect simulation of arbitrary finite physical systems

The dynamics of quantum computers, though by construction ‘finite’, are still unphysical in one im-
portant respect: the evolution is strictly unitary. However, the third law of thermodynamics (1.3) im-
plies that no realizable physical system can be prepared in a state uncorrelated with systems outside
itself, because its entropy would then be zero. Therefore, every realizable physical system interacts
with other systems, in certain states. But the effect of its dynamical coupling to systems outside itself
cannot be reduced to zero by a finite process because the temperature of the correlation degrees of
freedom would then have been reduced to zero. Therefore there can be no realizable way of placing
the system in states on which the components of the time evolution operator which mix internal and
external degrees of freedom have no effect

A faithful description of a finitely realizable physical system with anL-dimensional state spaceH
cannot therefore be madevia state vectors inH but must use density matrices�ab. Indeed, all density
matrices are in principle allowed except (thanks to the ‘entropy’ half of the third law (1.3)) pure cases.
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The dynamics of such a system are generated not by a unitary operator but by a superscattering matrix
$:

�a
b(T ) =

X
c;d

$a
bc
d �c

d(0): (3.7)

It is worth stressing that I am not advocating non-unitary dynamics for the universe as a whole,
which would be a heresy contrary to quantum theory. Equation (3.7) is, of course, merely the projec-
tion intoH of unitary evolution in a higher state spaceH �H0, whereH0 represents as much of the
rest of the universe as necessary. Roughly speaking (the systems are far from equilibrium)H0 plays
the role of a ‘heat bath’.

Thus the general superscattering operator has the form

$a
bc
d =

X
e0;f 0;g0

Uae0
cf 0Ubc0

dg0 ��f 0
g0 ; (3.8)

whereUab0
cd0 is a unitary operator onH�H0, that isX

c;d0

Uab0
cd0Uef 0

cd0 = �a
e �b0

f 0 ; (3.9)

which does not decompose into a product of operators onH andH0. (Raising and lowering of indices
denotes complex conjugation.) The term��a0 b

0
has an approximate interpretation as the initial density

matrix of the ‘heat bath’, which would be strictly true if the system, the heat bath, and the entity
preparing the system in its initial state were all uncorrelated initially. Let us rewrite (3.8) in the
H0-basis in which�� is diagonal :

$a
bc
d =

X
e0;f 0

Pf 0Uae0
cf 0Ube0

df 0 ;

X
a0

Pa0 = 1; (3.10)

where the probabilitiesPa0 are the eigenvalues of��. The setG of all superscattering matrices (3.8) or
(3.10) lies in a subspaceJ ofH�H� �H� �H, namely the subspace whose elements satisfyX

a

$a
bc
c = �bc: (3.11)

Every element ofG satisfies the constraints

0 �
X
a;b;c;d

�(1)b $a
bc
d �

(2)
c

d � 1 (3.12)

for arbitrary density matrices�(l) and�(2).
The inequality on the left in (3.12) can be an equality only if the states ofH form disjoint subsets

with strictly zero probability so that thermal noise can effect a transition between them. This is
impossible unless there are superselection rules forbidding such transitions, a possibility that we lose
no generality by excluding because only one superselected sector at a time can be realized as a physical
system. The inequality on the right becomes an equality precisely in the unitary case

$a
bc
d = Ua

c Ub
d; (3.13)
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which is unphysical because it represents perfectly non-dissipative evolution. Thus the set of phys-
ically realizable elements ofG is an open set inJ . Moreover, for any$(1) and $(2) that areQ-
computable the convex linear combination

p1$
(1) + p2$

(2); (3.14)

wherep1 andp2 are arbitrary probabilities, is also computable, thanks to the random number generator
(3.2). By computing unitary transformations as in (3.10), every element of a certain countable dense
subset ofG can be computed. But every point in any open region of a finite-dimensional vector space
can be represented as a finite convex linear combination of elements of any dense subset of that space.
It follows thatQ, can perfectly simulate any physical system with a finite-dimensional state space.
Therefore quantum theory is compatible with the Church-Turing principle (1.2).

The question whether all finite systems in the physical universe can likewise be simulated byQ,
— i.e. whether (1.2) is satisfied in Nature — must remain open until the state space and dynamics
of the universe are understood better. What little is known seems to bear out the principle. If the
theory of the thermodynamics of black holes is trustworthy, no system enclosed by a surface with an
appropriately defined areaA can have more than a finite number (Bekenstein 1981)

N(A) = exp(Ac3=4~G) (3.15)

of distinguishable accessible states (~ is the Planck reduced constant,G is the gravitational constant
andc is the speed of light). That is, in a suitable basis the system can be perfectly described by using
anN(A)-dimensional state space, and hence perfectly simulated byQ.

Parallel processing on a serial computer

Quantum theory is a theory of parallel interfering universes. There are circumstances under which
different computations performed in different universes can be combined byQ giving it a limited
capacity for parallel processing. Consider the quantum program

1p
N

NX
i=1

j�(f; 2; 3); i; 0i; (3.16)

which instructsQ in each ofN universes to computef(i), for i from 1 to N . Linearity and (2.11)
imply that after executing (3.16)Q halts in the state

1p
N

NX
i=1

j�(f; 2; 3); i; f(i)i: (3.17)

Although this computation requires exactly the same time, memory space and hardware as (2.11), the
state (3.17) contains the results of an arbitrarily large numberN of separate computations. Unfortu-
nately, at most one of these results is accessible in each universe. If (3.16) is executed many times,
the mean time required to compute allN valuesf(i), which I shall refer to collectively asf , is at
least that required for (2.11) to compute all of them serially. I shall now show that the expectation
value of the time to compute any non-trivialN -fold parallelizable functionG(f) of all N valuesf
via quantum parallelism such as (3.16) cannot be less than the time required to compute it serially via
(2.11).

For simplicity assume that� , the running time of (2.11), is independent ofi and that the time taken
to combine all thef to formG(f) is negligible compared with� . Now suppose that there exists a
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program�, which for any functionf extracts the value ofG(f) from (3.17) in a negligible time and
with probability j�j2. That is,� has the effect

1p
N

NX
i=1

ji; f(i)i ! �j0; G(f )i+
p

1� j�j2j1ij�(f )i; (3.18)

where the statesj�(f )i contain no information aboutG(f). Then the first slot could be measured.
If it contained zero, the second slot would containG(f). Otherwise the information in (3.17) would
have been lost and it would have to be recomputed. Unitarity implies

1

n

NX
i=1

�(f(i); g(i)) = j�j2�(G(f); G(g)) + (1� j�j2)h�(f )j�(g)i (3.19)

for any functionsg(i) andf(i).
If G(f) is not a constant function then for each functionf(i) there exists another functiong(i)

such thatG(g) 6= G(f), butg(i) = f(i) for all but one value ofi between1 andN . For this choice

1� 1

N
= (1� j�j2)h�(f )j�(g)i; (3.20)

whence it follows thatj�j2 < 1=N . Thus the mean time to computeG(f) must be at least�=j�j2 =
N� . This establishes that quantum parallelism cannot be used to improve the mean running time of
parallelizable algorithms. As an example of quantum parallelism forN = 2, let

G(f) � f(0)� f(1); (3.21)

(see equations (2.12)). Then the state (3.17) following the quantum parallel computation has

1p
2
(j0; f(0)i + j1; f(1)i) (3.22)

as a factor. A suitable program� to ‘decode’ this is one that effects a measurement of any non-
degenerate observable with eigenstates

jzeroi � 1
2 (j0; 0i � j0; 1i + j1; 0i � j1; 1i);

jonei � 1
2 (j0; 0i � j0; 1i � j1; 0i + j1; 1i);

jfaili � 1
2 (j0; 0i + j0; 1i + j1; 0i + j1; 1i);

jerrori � 1
2 (j0; 0i + j0; 1i � j1; 0i � j1; 1i):

9>>=
>>; (3.23)

Such an observable exists, since the states (3.23) form an orthonormal set. Furthermore, the mea-
surement can be made in a fixed time independent of the execution time of the algorithm computing
f . If the outcome of the measurement is ‘zero’ (i.e. the eigenvalue corresponding to the statejzeroi)
or ‘one’ then it can be inferred thatf(0) � f(1) is zero or one respectively. Whatever the form of
the functionf , there will be a probability1=2 that the outcome will be ‘fail’, in which case nothing
can be inferred about the value off(0) � f(1). The probability of the outcome ‘error’ can be made
arbitrarily small with a computational effort independent of the nature off .

In this example the boundN� for the running time has been attained. However, forN > 2 I have
been unable to construct examples where the mean running time is less than(N2 � 2N + 2)� , and
I conjecture that this is the optimal lower bound. Also, although there exist non-trivial examples of

14



quantum parallelizable algorithms for allN , whenN > 2 there are none for which the functionG(f)
has the set of all2N possible graphs off as its domain.

In practical computing problems, especially in real time applications, one may not be concerned
with minimizing specifically themeanrunning time of a program: often it is required that the min-
imum or maximum time or some more complicated measure be minimized. In such cases quantum
parallelism may come into its own. I shall give two examples.

(1) Suppose that (3.17) is a program to estimate tomorrow’s Stock Exchange movements given
today’s, andG(f) specifies the best investment strategy. If� were one day andN = 2, the classical
version of this program would take two days to run and would therefore be useless. If the quantum
version was executed every day, then on one day in two on average slot1 would contain the measured
value ‘1’, indicating a failure. On such days one would make no investment. But with equal average
frequency a zero would appear, indicating that slot2 contained the correct value of the investment
strategyG(f). G(f), which incorporates the result of two classical processor-days of computation,
would on such occasions have been performed by one processor in one day.

One physical way of describing this effect is that when the subtasks of anN -fold parallel task are
delegated toN2 � 2N + 2 universes, at most one of them can acquire the overall result.

(2) Now consider the problem of the design of parallel information-processing systems which
are subject to noise. For example, suppose that it is required, within a fixed time� , to compute a
certainN -fold parallelizable functionG(f). NR processors are available, each of which may fail for
reasons of thermal noise, etc. with probabilityp. For simplicity assume that such a hardware error can
be reliably detected. The problem is to minimize the overall failure rateq. ‘Classically’ (i.e. without
using quantum parallelism) one minimizesq by means of anR-fold redundancy:R processors are
instructed to perform each of theN parallel subtasks. The machine as a whole will therefore fail to
compute the result in time only when allR processors assigned to anyone subtask fail, and this occurs
with probability

qclassical = 1� (1� pR)N : (3.24)

Using quantum parallelism, however, each of theNR available processors may be given allN
tasks. Each is subject to two independent causes of failure, (i) the probabilityp that it will fail for
hardware reasons, and (ii) the probability, which as I have indicated will for certainG(f) be 1 �
1=(N2 � 2N + 2), that it will end up in a different universe from the answer. It takes only one of the
NR processors to succeed, so the failure rate is

qquantum =

�
1� 1� p

N2 � 2N + 2

�NR

(3.25)

a number which, for suitable values ofp,N andR, can be smaller than (3.24).

Faster computers

One day it will become technologically possible to build quantum computers, perhaps using flux
quanta (Likharev 1982; Leggett 1985) as the fundamental components. It is to be expected that such
computers could operate at effective computational speeds in excess of Turing-type machines built
with the same technology . This may seem surprising since I have established that no recursive
function can be computed byQ on average more rapidly with the help of quantum programs than
without. However, the idealizations inQ take no account of the purely technological fact that it is
always easier in practice to prepare a very large number of identical systems in the same state than to
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prepare each in a different state. It will therefore be possible to use a far higher degree of redundancy
R for parallel quantum programs than for classical ones running on the same basic hardware.

Interpretational implications

I have described elsewhere (Deutsch 1985; cf. also Albert 1983) how it would be possible to make a
crucial experimental test of the Everett (‘many-universes’) interpretation of quantum theory by using a
quantum computer (thus contradicting the widely held belief that it is not experimentally distinguish-
able from other interpretations). However, the performance of such experiments must await both the
construction of quantum computers and the development of true artificial intelligence programs. In
explaining the operation of quantum computers I have, where necessary, assumed Everett’s ontology.
Of course the explanations could always be ‘translated’ into the conventional interpretation, but not
without entirely losing their explanatory power. Suppose, for example, a quantum computer were
programmed as in the Stock Exchange problem described. Each day it is given different data. The
Everett interpretation explains well how the computer’s behaviour follows from its having delegated
subtasks to copies of itself in other universes. On the days when the computer succeeds in performing
two processor-days of computation, how would the conventional interpretations explain the presence
of the correct answer?Where was it computed?

4 Further connections between physics and computer science

Quantum complexity theory

Complexity theory has been mainly concerned with constraints upon the computation of functions:
which functions can be computed, how fast, and with use of how much memory. With quantum
computers, as with classical stochastic computers, one must also ask ‘and with what probability?’.
We have seen that the minimum computation time for certain tasks can be lower forQ than forT .
Complexity theory forQ deserves further investigation.

The less immediately applicable but potentially more important application of complexity theory
has been in the attempt to understand the spontaneous growth of complexity in physical systems, for
example the evolution of life, and the growth of knowledge in human minds. Bennett (1983) reviewed
several different measures of complexity (or ‘depth’, or ‘knowledge’) that have been proposed. Most
suffer from the fatal disadvantage that they assign a high ‘complexity’ to a purely random state.
Thus they do not distinguish true knowledge from mere information content. Bennett has overcome
this problem. His ‘logical depth’ is roughly the running time of the shortestT -program that would
compute a given state from a blank input. Logical depth is at a minimum for random states. Its
intuitive physical justification is that the ‘likeliest explanation’ why a physical system might be found
to be in the state is that was indeed ‘computed’ from that shortestT -program. In biological
terminology, logical depth measures the amount of evolution that was needed to evolve from the
simplest possible precursors.

At first sight Bennett’s construction seems to lose this physical justification when it is extended
beyond the strictly deterministic physics of Turing machines. In physical reality most random states
are not generated by ‘long programs’ (i.e. precursors whose complexity is near to their own), but
by short programs relying on indeterministic hardware. However, there is a quantum analogue of
Bennett’s idea which solves this problem. Let us define the Q-logical depth of a quantum state as the
running time of the shortestQ-program that would generate the state from a blank input (or, perhaps,
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as Bennett would have it, the harmonic mean of the running times of all such programs). Random
numbers can be rapidly generated byshortQ-programs.

Notice that the Q-logical depth is not even in principle an observable, because it contains infor-
mation about all universes at once. But this makes sense physically: the Q-logical depth is a good
measure of knowledge in that it gives weight only to complexity that is present in all universes, and
can therefore be assumed to have been put there ‘deliberately’ by a deep process. Observationally
complex states that are different in different universes are not truly deep but just random. Since the
Q-logical depth is a property of the quantumstate(vector), a quantum subsystem need not necessarily
have a well defined Q-logical depth (though often it will to a good degree of approximation). This is
again to be expected since the knowledge in a system may reside entirely in its correlations with other
systems. A spectacular example of this is quantum cryptography.

Connections between the Church-Turing principle and other parts of physics

We have seen that quantum theory obeys the strong form (1.2) of the Church-Turing principle only
on the assumption that the third law of thermodynamics (1.3) is true. This relation is probably better
understood by considering the Church-Turing principle as more fundamental and deriving the third
law from it and quantum theory.

The fact that classical physics does not obey (1.2) tempts one to go further. Some of the features
that distinguish quantum theory from classical physics (for example the discreteness of observables?)
can evidently be derived from (1.2) and the laws of thermodynamics alone. The new principle has
therefore given us at least part of the solution to Wheeler’s problem ‘Why did quantum theory have to
be?’ (see, for example, Wheeler 1985).

Various ‘arrows of time’ that exist in different areas of physics have by now been connected and
shown to be different manifestations of the same effect. But, contrary to what is often asserted, the
‘psychological’ or’ epistemological’ arrow of time is an exception. Before Bennett (1973) it could
be maintained that computation is intrinsically irreversible, and since psychological processes such
as the growth of knowledge are computations, the psychological arrow of time is necessarily aligned
with the direction in which entropy increases. This view is now untenable, the alleged connection
fallacious.

One way of reincorporating the psychological arrow of time into physics is to postulate another
new principle of Nature which refers directly to the Q-logical depth. It seems reasonable to assert, for
example, that the Q-logical depth of the universe is at a minimum initially. More optimistically the
new principle might require the Q-logical depth to be non-decreasing. It is perhaps not unreasonable to
hope that the second law of thermodynamics might be derivable from a constraint of this sort on the Q-
logical depth. This would establish a valid connection between the psychological (or epistemological,
or evolutionary) and thermodynamic ‘arrows of time’.

Programming physics

To view the Church-Turing hypothesis as a physical principle does not merely make computer science
a branch of physics. It also makes part of experimental physics into a branch of computer science.

The existence of a universal quantum computerQ implies that there exists a program for each
physical process. In particular,Q can perform any physical experiment. In some cases (for example
measurement of coupling constants or the form of interactions) this is not useful because the result
must be known to write the program. But, for example, when testing quantum theory itself, every

17



experiment is genuinely just the running of aQ-program. The execution onQ of the following
ALGOL 68 programis a performance of the Einstein-Podolski-Rosen experiment:

begin
int n = 8 � random; % random integer from0 to 7 %
bool x; y; % bools are2-state memory elements%
x := y := false; % an irreversible preparation%
V (8; y); % see equation (2.15)%
x eoraby; % perfect measurement (2.14)%
if V (n; y) 6= % measurey in random direction%
V (n; x) % andx in the parallel direction%
then print((”Quantum theory refuted.”))
elseprint((”Quantum theory corroborated.”))

fi
end

Quantum computers raise interesting problems for the design of programming languages, which
I shall not go into here. From what I have said, programs exist that would (in order of increasing
difficulty) test the Bell inequality, test the linearity of quantum dynamics, and test the Everett inter-
pretation. I leave it to the reader to write them.

I wish to thank Dr C. H. Bennett for pointing out to me that the Church-Turing hypothesis has
physical significance, C. Penrose and K. Wolf for interesting discussions about quantum computers,
and Professor R. Penrose, F.R.S., for reading an earlier draft of the article and suggesting many im-
provements.
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