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Towards a Quantum Theory without
‘Quantization’

DAVID DEUTSCH

1. INTRODUCTION: QUANTUM THEORY VERSUS
QUANTIZATION THEORY

Bryce DeWitt is a philosophical realist. He believes that the world exists objectively
and that the task of physics is to obtain as true as possible a description of it. He has
always contended that we should take seriously the assertions of our theories, to
‘push them to their limits’ until they either fail or yield new insights into the nature of
reality. He has opposed ad hoc attempts to reformulate newer, better but
uncomfortable theories in terms of the formalism, kinematics and ontology of
familiar but obsolete theories. Thus for him, general relativity is a theory of the
dynamics of space-time geometry, not just another field theory on a Minkowskian
flat space-time background. And quantum theory is an objective theory of parallel
interfering universes, not of a sequence of subjective classical experiences.

Quantum theory has been extraordinarily slow in freeing itself from the apron
strings of its classical ancestors. In championing and developing Everett’s interpret-
ation (DeWitt and Graham 1973) DeWitt has been instrumental in the exorcism of
classical concepts from the interpretation of quantum theory. But in the more
important matter of formalism we still know of no other way of constructing
quantum theories than ‘quantization’, a set of semi-explicit ad hoc rules for making a
silk purse (a quantum theory) out of a sow’s ear (the associated classical theory). And
even DeWitt, who originated most of the ideas presented in this article, now appears
to acquiesce in this.

I believe that quantization will have to go before further progress is made at the
foundations of physics.

Perhaps the reason is best illustrated by analogy: suppose that in an elementary
chemistry textbook, in the chapter on combustion, no mention were made of oxygen.
Instead, the chapter begins with a detailed exposition of the theory of phlogiston. It
then explains that this theory is now known to be false, but that a better theory may
be constructed from it by means of ‘chemicalization rules’: ‘phlogiston must be
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thought of formally as occupying a negative volume’, and so forth. These rules are
numerous, ramshackle and without independent motivation but (in experienced
hands) they do correctly predict the results of experiments. Usually. If chemistry
were really in the state indicated by such a textbook, it would bode ill for the future
of the subject. Progress would be halted until chemists stopped thinking in terms of
phlogiston and someone invented a theory of oxygen.

To base the theory of quantum fields &; on that of classical fields ¢, is like basing
chemistry on phlogiston or general relativity on Minkowski space—time: it can be
done, up to a point, but it is a mistake; not only because the procedure is ill defined
and the resulting theory of doubtful consistency, but because the world isn’t really
like that. No classical fields @, exist in nature. Like phlogiston, they were participants
in obsolete physical theories. Only when the quantum formalism contains no
reference to classical theory can we hope to understand what it says. And only then
can we hope to improve upon it.

It might be objected that the Correspondence Principle gives the classical theory
of ¢; a special place in the quantum theory of &;. But this is just a confusion created
by quantization theory. As we shall see, the Correspondence Principle can be
formulated without reference to classical theory.

2. QUANTUM THEORY WITHOUT CLASSICAL THEORY

I shall now try to set up the formalism of quantum theory without referring to
classical concepts noting, but not always solving, the problems as they arise.

An observable § is something whose numerical value can in principle be
measured, or could be measured if the requisite measuring apparatus were present at
the appropriate time(s) and place(s). The set {@} of possible outcomes of a
measurement of  is called the spectrum of §. If the spectrum of & is independent of
time,  is said to have ‘no explicit time dependence’. In quantum theory, observables
( are represented by Hermitian operators and the values {¢} are their eigenvalues.

The observables in nature are quantum fields; that is, parametrized sets of
observables @;. The index i represents a set of parameters such as space-time
coordinates, tensor indices, internal symmetry indices and enumeration indices. At
present it is customary always to include a time coordinate t among the parameters.
The fact that something with as fundamental a physical significance as the time
appears only as a parameter is somewhat unsatisfactory and may be eliminated in
future formulations (Page and Wootters 1982) of quantum theory. '

The state of the world is represented by a unit vector, the state vector [¢ >, in the
Hilbert space spanned by the eigenvectors of any maximal commuting set of
observables. This is not the place to describe the mechanism by which the formal
structure of vectors and Hermitian operators is asserted by quantum theory to
correspond to reality. The reader is referred to the work of Everett (DeWitt and
Graham 1973; Deutsch 1980). Suffice it to say that the interpretation of quantum
theory has been shown to require no classical element. When the same has been done
for the formalism, quantum theory will have come of age.
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The dynamics of quantum fields are generated by a principle of stationary action.
The action is an operator-valued functional

S[¢:] 2.1)
of the field observables. Under an infinitesimal variation
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An ambiguity of notation arises in (2.3) (Which can serve as a formal definition of the

functional derivative). it is not clear how the three pairs of implied operator indices

are to be connected and summed over. It is necessary to make these indices explicit,

writing (2.3) as
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where each quantum index & stands for a Hermitian pair of Hilbert space labels. 1
have also adopted the Einstein summation convention both for the quantum indices
and for the generalized coordinates i.

The quantum principle of stationary action is not as straightforward as the
classical one. It is not in general possible for the full variation 6S;/d¢j; to vanish. The
indices show that the resulting system of dynamical equations would be over-
determined. The correct principle has the form

3S:[@]

5‘Pﬁi
for some functional X d [(}3], which is equivalent to the requirement that the action be
stationary, not under general variations in @;, but only under variations of the form

00z = X3700; (2.6)

Xp'[¢]=0 (2.5)

where the d¢; are suitable inﬁnitesimaLc-number test functions. It is not known in
general how to choose the functional X /[ $]. Schwinger (1953), Peierls (1952), and
DeWitt (1967) all make the natural choice (for Boson fields)

R =01 2.7)

which would mean that the action is to be stationary under pure c-number variations
in the fundamental field. For certain well studied systems this reproduces the same
quantum theory as ‘canonical quantization’. But it cannot be the correct choice in
general because the variations (2.6) are not in general compatible with the algebra of
the operators &;. Fermion fields are an obvious example since anticommutators are
not invariant under c-number variations. A simple Boson example is the case where i
runs from 1 to 3 and @, represents the ith angular momentum component L, (1) of a
spin-1 system,

[L:(0), £;(0)] = ies Ly (0). (2.8)
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Variations 81,1 are incompatible with (2.8). One compatible choice would be
8L, =ie oL, (1) Lo(0) (2.9)
corresponding to
X J[L] =ief* Ly, (2.10)

Since different variations X i/ 0¢; generate different stationary action principles
and different dynamics, it follows that quantum theory is not covariant under
coordinate transformations in configuration space, at least not in any sense known
at present. This is in marked contrast to classical theory where the variational
principle

oStel _ (2.11)
09;
implies
08 08 d¢;
—=—-1=0 2.12)
or;  0@; Sy (
In the quantum case
085 i — 52 0%hi y 4 (2.13)
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which cannot in general be required to vanish whenever ((5§/6¢ B X 3,-" does.
Coordinate invariance in the base space (i.e. parameter space) can of course still be

maintained in quantum theory, but gauge invariance (at least for non-Abelian gauge
groups) cannot. What is to become of these cherished invariances of classical field
theory—of what property of the quantum theory they are the limiting cases—is an
open question. Perhaps the quantum action principle is invariant only under some
special class of transformations. Or more interestingly, perhaps the X/ itself suffers
changes under coordinate transformations in configuration space, such as to
preserve coordinate invariance. This raises the possibility of a more general action
principle

983 x it TH,55=0 (2.14)

% Bi gop="0. .
Could this be regarded as a ‘covariant functional derivative’ with ‘connection
coefficients’ [/ (DeWitt, private communication)?

3. SOME ELABORATION OF THE PURE QUANTUM THEORY

The dynamical equations (2.5) cannot be solved unless the algebra of the operators &;
is given. In quantization theory the algebra is determined by setting the commutator
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of any two observables equal to i times their classical Poisson bracket (as
generalized by Peierls and DeWitt). But, as 1 shall now show, this will not work in the
true quantum theory.

Following Peierls and DeWitt I first construct the theory of small disturbances
corresponding to the stationary action principle (2.5). If ¢, satisfies (2.5) and 69, is
the infinitesimal disturbance in ; caused by a variation S[ ] in the form of the
action then

58S,
_JbBi = — il 3.1
Fg'%oqp, 505 (3.1
where
Bicaq 08z [w] i 08;[@] 60Xy’
FP[p] = it LS (3.2)
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(3.1) is the quantum equation of small disturbances. F; NE is a bi-operator which we
may abbreviate as F. (I have ignored the possibility that X i/ might depend on the
form of the action.) Like the dynamical equation itself, equation (3.1) is soluble only
given a knowledge of the operator algebra. But in any case a Green’s function theory

can be based on the equation
R

F6= -1 (3.3)
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Although the Cauchy problem for operator differential equations is in general more
complicated than for scalars (because, for example, operators cannot in general be
required to vanish at infinity), this should not affect the Green’s function theory
because there is presumably no reason why a variation 5, should not vanish in, say,
the remote past. Therefore in particular there should exist a unique retarded Green’s
function G " Which satisfies equation (3.3). Asin the classical theory, the right and left
inverses of F are equal,
A A A
G F=-1 (3.5)

and much of the classical Green’s function theory can be carried over to the quantum
case just by putting extra hats and indices in appropriate places. For example,
defining

D ;B=1lmé3zB (3.6)

£—=0

where 654 Bis the retarded disturbance in B produced by a variation $8in the action,
we have
0B, Gi'i o4y X3~ 3.7)
o0, %
There is, however, one important exception: the operator Fin the quantum case is
not in general self-adjoint, i.c.

DiB; =

F o Fikyi (3.8)



426 Towards a Quantum Theory without ‘Quantization’

(where raising and lowering of quantum indices denotes Hermitian conjugation).
This has the consequence that the Peierls—Poisson—DeWitt bracket

(4, B)=D;B-D;4 (3.9)
based on equation (3.7) does not obey the Jacobi identities and cannot therefore be
consistently identified with —1i times the commutator as convention (and DeWitt)
would have it. Peierls was aware of this problem and suggested that extra terms
might be added to his bracket to restore the consistency of his quantization scheme.
No one has yet found a way of doing this.

The Peierls—Poisson-DeWitt bracket method of specifying the operator algebra
is closely related to the Schwinger variational principle which states that

é (out|in > = i {out|dS|in (3.10)

under a variation 88 in the form of the action, where |out ) and |in ) are states
corresponding to fixed eigenvalues of observables with no explicit time dependence
and confined to the future and past respectively of 38 (it is assumed that 38 [#]is
constructed from field quantities confined to some parameter space region of
effectively finite duration). Using retarded boundary conditions we have

8liny =0 (3.11)
so equation (3.10) implies
dlout)y = —id8out) (3.12)
and hence if A[¢] is an ‘out’ observable,
04 = —i[88, 4]. (3.13)
But 64 can also be represented dynamically via the theory of small disturbances
84 = DisA. (3.14)

Since the commutator is anti-symmetric in its arguments and D39S vanishes, it
follows that

[08, 4] = i(Dj34 —D359) (3.15)

which, since 68 and A are effectively arbitrary, is the quantum analog of the Peierls
expression. Unfortunately, advanced boundary conditions give a different answer

[958, 4] = i(D}88 — D A). (3.16)

This signals an inconsistency in the dynamics implied by equation (3.10). The c-
number analogs of equation (3.15) and equation (3.16) are indeed identical, but
equation (3.8) causes the reciprocity relation between D B and Dgﬁ to fail in the
quantum case. The argument that equations (3.15) and (3.16) ditter only by factor-
ordering ambiguities seems particularly hollow in this instance, but it does imply
that equation (3.15) is true to the lowest order in 4.

It therefore appears that the Schwinger principle is, as it stands, inconsistent in the
full quantum theory. Again it is not known how to modify it.
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4. PERTURBATION THEORY AND THE
CORRESPONDENCE PRINCIPLE

Fortunately, many of the physical predictions of quantum theory can be obtained
without a complete knowledge of the operator algebra. This is the reason why
quantization theory, in spite of its cavalier treatment of the ‘factor-ordering
problem’ can have a measure of empirical success. And it is the reason why a c-
number theory can exist as a limiting case. The fact that factor-ordering ‘ambiguities’
are of order h in perturbative expansions of physical quantities is an expression of
the Correspondence Principle. To see how this convenient property arises, let us
develop the archetypal perturbation method of quantum field theory, the back-
ground field method.

The objective of background field schemes is always to describe as much as
possible of the system in terms of c-number fields. In particular, Schwinger
(Schwinger 1953, DeWitt 1965, 1982) found that much can be learned about a
quantum theory by investigating the effect of adding a linear source term

§S->8+Jip, @.1)

to the action functional. The J ' are c-number ‘external sources’. Schwinger’s starting
point was his variational principle equation (3.10) which I shall assume is true to a
sufficiently high order in h to make the following meaningful.

Equation (3.10) implies directly

Cout| T(A[@])|iny = 4 [%](out]irw 4.2)

where T'is the time ordering symbol and A is the same functional of the § /6iJ;as Ais
of the ;.

DeWitt introduced in addition to the external source J* a second c-number field
#;, a so-called ‘classical solution’ of the dynamical equations (2.5). @; f will serve asa
zeroth approximation to ;. Let us consider only the case where X/ = 1. Then the
classical solution is defined to satisfy

‘S—S["’i—ﬂlF —J, 1L (4.3)
O

(For non-trivial X/ one would have to define the ‘classical solution’ as a g-number
such as ¢, Y ;, which would raise interesting interpretational problems. This has not
been explored to my knowledge.) ¢, is not really a solution of equation (4.3) because
o, 1 will not satisfy any non-trivial commutation relations which, as I have said, must
tacitly accompany equation (4.3).

Provided that § acquires its operator character solely via the &;, ¢; will also be the
solution of an associated c-number (‘classical’) variational problem, for the action
functional S[¢;] where

Saleil]=S[e:]15. (4.4)
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Writing
= o, 1+¢ (4.5)

we now regard @, as formally ‘small’ in a perturbatlve scheme for solving equation
(2.5). The intuitive justification for this is that ¢; { differs from the true solution only
because all the commutators [ $;, $;] have been set to zero in solving the dynamical
equations (3.3)—and these commutators ought to be proporti-onal to positive
powers of h. Nevertheless one can at most hope to represent @; by such a
perturbatlon expansion over some finite part of its (usually) infinite spectrum. For
the term ¢, { will not dominate an unbounded operator, however many powers of h
the latter contains. However in regimes where # is ‘small’, we may continue

0Salof] | &*Silef] o 1 &Sifef]

—Jilg= +
o dep s dp50p; 1pdy+ 2 09516050 9p;

Contrary to first appearances, the operator content of the first three functional
derivatives in this expansion, given again that S depends on no operator independent
of the ;, is trivial and independent of the algebra of the &;. This is important for
quantization theory since the expansion is useless after the first term containing a
factor-ordering ambiguity. In terms of the classical action S[¢],

53[(0] _0S[e], 1 5S[e]
Sop " 80id0; 7 200.:60,00,
We are now in a position to derive the centerpiece of quantization theory, the
Feynman functional integral formula (DeWitt 1965, 1982), not as an exact theorem

but as a remarkable approximation to the true theory. The last term in equation (4.7)
can be rewritten as

130505+ ... (46)

—Ji = Gibit.... 4.7
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Hence
(7 oS[p] 1 &8°S[@] ... . . )
- 2 j 49
T (5(17; +25(p,-6qoj5(ph0(1’k)[¢k,(91] + 4.9

But since we are supposing that the Peierls expression for the commutator is correct
to leading order in A,

o (3SP] i BS[O] )
=J'1=T += G +... (4.10)
< op; 2 5‘Pi6¢j5(ﬂk [(,0]

where G * ¥ is the c-number advanced Green’s function. The various functionals of ¢,
in (4.9) and (4.10) are promoted to operators by evaluating them with the ;s in any
order! Finally we have
). 4.11)
o=

i T(é_‘;: <S[<p]+%lndetG+[(P]>
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Still following DeWitt we now express {out|in ) s, as a functional Fourier transform

{out|in) = IF[(p](:Xp (iJ‘e)D[@].

(4.12)

Functional integration by parts and equations (4.2) and (4.11) give successively

Ki F[(p])exp (iJip;) D[¢] = —Ji (out|in )

0Q;
= <out ) in>
[
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)

00;

] i -
- o (STo1+ 3 met6* o) ) FLolexp (%6, DLo].
It follows that

d

s FLo] =50 (001 + 3 nderG* (o] ) FLo)

Flo] o exp (iS[¢])(det G* [@]) 12

and

out|in ) o Jexpi(S[w]+Jj¢j)(det G*[e])"'*Dle]

CONCLUSION

(4.13)

(4.14)

(4.15)

(4.16)

4.17)

4.18)

(4.19)

We have seen how classical theory arises as a zeroth approximation and quantization
theory as a first approximation to real quantum theary. How fortunate it is that we
can say so much about the approximations to a theory the true nature of which is still

SO mysterious.
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