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A couple of years ago, the mathematician Hannah Fry made a TV 
documentary about Ada Lovelace, the nineteenth-century computer-theory 
pioneer. It was about an episode in the history of ideas which would have 
been absolutely pivotal, if anybody had noticed it at the time. Or in other 
words if Lovelace hadn’t died young. 

Because, well, from the evidence in that documentary, I suspect that the first 
human being to get, the universality of computation, was actually Lovelace 
and not her colleague Charles Babbage, the designer of the universal 
computer that she was theorising about: Babbage’s Analytical Engine. Never 
built, but like many of these computers the significance was in the design, the 
theory, rather than actual building. The thing is, it would have had two kinds 
of universality and Babbage was obsessed with one of them.  

He had perhaps been the first human being to understand what one could call 
arithmetical universality. His previous design, the Difference Engine, could 
compute polynomials in one fixed-point variable. So, a very limited kind of 
universality – universal for those. But Babbage realised that if he added just a 
few more features, conceptually very simple, the machine would make the 
jump to universality, becoming the Analytical Engine, universal for any 
arithmetic function, of any number of variables, of any finite precision. 
Basically what we would today call: computable functions. So this was 
arithmetical universality. 
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What Lovelace understood, I think, was the significance of the Analytical 
Engine’s ability to compute: not just any arithmetic but anything – in the world. 
In the physical world.  

She envisaged all sorts of applications like computer music and art and chess 
and so on. But this wasn’t just a matter of usefulness. The abilities of the 
Analytical Engine as a physical object depend on a momentous property of the 
laws of physics themselves. All of them. 

Namely: while the Analytical Engine could instantiate an infinitesimal 
fraction of all mathematical objects and relationships (what we call the 
computable ones), it could also – apparently – instantiate (or simulate, 
emulate) all possible motions of all possible physical objects, and their laws. 
Not just a tiny subset. This physical universality is an intrinsic property of the 
laws of physics. It doesn’t follow from Babbage’s arithmetical universality. It 
has nothing to do with mathematics. In fact neither of the universalities 
follows from the other.  

Yet it seemed that both of them were exhibited by the same machine. Why? 
Well, whatever the reason, it’s in the laws of physics. It would make no sense 
to try to prove it – other than from the laws of physics.  

This unity of the two universalities was also conjectured later, explicitly, by 
Alan Turing in the 20th century: it’s just Turing’s conjecture. Sometimes 
called the Church-Turing thesis – it has various names. But the usual way that 
this conjecture is described is not that it’s ‘The unity of the two universalities’. 

Why not? Well, Turing’s great paper presenting his conjecture had an 
‘application’, as he put it, to a fundamental puzzle posed by the 
mathematician David Hilbert: basically: what is the relationship between a 
true mathematical statement and a provable one. Hilbert had hoped that one 
could define a system of proof, such that a mathematical statement was true if 
and only if it could be proved under that system. 

In the 1930s, mathematicians converged from several directions on the 
realisation that that is impossible. Notably, Kurt Gödel proved that there can 
be no method of proof that identifies all true mathematical propositions.  

Now, Turing’s approach – did the same in that respect, but it had wider 
implications – as we now know, because of these, physical, objects: computers. 
The reason Turing’s approach had this additional reach was that: Gödel’s 
model of proof was a model inside the arithmetic of the integers. So nothing 
to do with computation. He simply defined proofs as finite sequences of 
symbols drawn from a finite set, and all that stuff. But there was no ‘Gödel’s 
conjecture’. It was Turing who realised that that notion of what proving 
something means, isn’t self-evident: so he acknowledged it as a substantive 
conjecture, the Turing conjecture. The model of proof that he used was 
computation. And the model of computation that he used was physical. Strips 
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of paper divided into squares with symbols and a finite set of discrete 
operations on them. The universal Turing machine. And  when he 
conjectured that this machine was universal for proofs, the phrase he used, was 
that it could compute anything which “would naturally be regarded as 
computable”. At the time, the word ‘computer’ meant a human being. It 
wasn’t one of these things. Someone whose job was to manipulate symbols on 
sheets of paper. And the manipulators obeying the rules, human beings. are 
physical objects too. So, by ‘anything that would naturally be regarded as 
computable’, Turing meant: computable in nature – by physical objects. And 
by ‘provable’, he meant provable by physical objects. 

Now, that conjecture, unlike Gödel’s proofs, might have been false. But it 
turned out to be true in nature. Or rather, very nearly true. As Richard 
Feynman remarked: they thought they understood paper; but they didn’t. And 
when I proved Turing’s conjecture from quantum theory, in 1985, it was with 
the slight correction that the universal machine is not Turing’s paper machine 
nor Babbage’s brass-gear machine, but the universal quantum computer.  

But I soon found out that not everyone saw it that way. I also had referee 
problems. The referee of the paper in which I presented that proof insisted 
that Turing’s phrase “would naturally be regarded as computable” referred to 
mathematical naturalness – mathematical intuition – not nature. And so what 
I had proved wasn’t Turing’s conjecture. It was about physics. So I asked 
some mathematicians what mathematical intuition is. Turned out, it was as 
much of a mystery to them as to me. Some of them said it was 
metamathematical intuition. Fair enough, but they couldn’t tell me what that 
was either. Some kind of mathematical mysticism, I think. But one thing they 
were all adamant about nevertheless, was that Turing’s conjecture was about 
whether his mathematical model of proof matched – not the physical world – 
but something else. Like mathematical intuition or something.  

Now, Turing’s basic insight, was that proof is computation, and computation 
is physical, and hence proof is physical. That it isn’t physical – seemed to me a 
philosophical absurdity. But it was an absurdity that all the mathematicians I 
asked insisted on. And most (not all) – most non-mathematicians who’d 
thought about computation, didn’t. So I called it the Mathematicians’ 
Misconception. (The denial that proof is physical – is one way of putting it.) 

By the way, Rolf Landauer (Charles Bennett’s old boss) had been 
campaigning for years with the slogan computation is physical – and proof also.  

Just to be clear: Mathematical facts – like Fermat’s last theorem – aren’t 
physical. That there’s a difference between truth and provability was the main 
point of all those 1930s discoveries. 

Still, in my paper, I had to defer to prevailing usage, so I changed it, to define 
‘Turing’s conjecture’ as that vague metamathematical idea. And the referee at 
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least agreed to let me call my result a ‘proof of the Turing Principle’ to 
distinguish it from the conjecture. The Principle that there can be a physical 
object whose motions contain those of all other objects. Nevertheless, now 
people sometimes call that the Church-Turing-Deutsch Principle. And that’s 
how, the Mathematicians’ Misconception ended up giving me credit for 
something Alan Turing did, and arguably, Ada Lovelace did.  

A few years later, I gave a talk in Oxford, arguing that it makes no sense to 
regard Turing’s conjecture, in any form, as something one might hope to 
prove one day from logic, like Fermat’s last theorem. But that it could be 
proved to be a property of quantum mechanics.  

Sitting in the front row was Robyn Gandy, who’d worked with Turing. He 
got a bit agitated, and at the end, he stood up, and declared (with good 
humour but very emphatically) “I’ve never heard such a load of rubbish in 
my life”. 

I tried to explain further, but he seemed implacable. However, he’d also given 
a talk at the same event and at the dinner afterwards, he came over to where I 
was sitting, and said “You know, I think there might have been a grain of 
truth in there somewhere. Let’s talk about it later”. And we did discuss it 
later, but unfortunately we did not reach a resolution. 

He was a mathematician. He had the misconception. 

Unfortunately in the bigger picture, the Mathematicians’ Misconception has 
done more than just cause amusing anecdotes. It expresses the idea, 
acknowledged or not, that somewhere out there, in the world of mathematical 
abstractions, or in some supernatural world of mathematical intuition, there is 
the authentic, official, though ineffable (now we know that Hilbert was 
wrong), definition of proof. And if some physical process that doesn’t conform 
to that definition, turns out to allow us to know some new, necessary truth, 
that process wouldn’t constitute a proof of that truth. There’s the 
misconception. 

It so happens that a quantum computer’s repertoire of integer functions is the 
same as the Turing machine’s. They differ only in speed. So some people view 
this as vindicating the Mathematicians’ Misconception. But no. First of all, we 
only know that ‘they only differ in speed’, from physics, from quantum 
theory. And second, quantum theory won’t be the final theory in physics – 
and even if it is, you can’t prove that either, from mathematical intuition. In reality, 
we only have physical intuition: never provable, always incomplete and full 
of errors. 

The misconception also affects thinking about information. For example, a 
quantum cryptographic device may perform a classical information-processing 
task, that is provably impossible classically. So the misconception makes 
people say ‘well, quantum cryptography isn’t an information-processing task; 



 5 

it’s just an engineering task, like building a washing machine’. Why? Just 
because Turing machines couldn’t perform it! Again, they think there’s a 
mathematical definition of information somewhere, independent of physics. 

The same holds for probability, by the way. 

Similarly again, the answer to Eugene Wigner’s famous question about why 
mathematics is ‘unreasonably effective in science’, is not that the physical 
world is actually being computed, on a vast computer – belonging to God. Or 
to super-normal aliens – Snailiens. Because there’s no reason, other than the 
Misconception, why the Snailiens’ computer should itself generate that 
particular tiny piece of mathematics we call ‘computable’. 

Purely mathematical intuition will never reveal anything about proof, or 
computation, or probability, or information. If you want to understand any of 
those fundamentally, you must start with laws of physics. And in particular 
with what is currently the most fundamental theory in physics: quantum 
theory. It won’t always be the most fundamental. But its replacement will not 
come from mathematics, logic, or the supernatural. 

 


